Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models : either, neither or both?
Year of publication: |
2022
|
---|---|
Authors: | Wang, Lu ; Wu, Jiangbin ; Cao, Yang ; Hong, Yanran |
Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 111.2022, p. 1-12
|
Subject: | GARCH-MIDAS | Long-term forecasting | Markov regime-switching | Renewable energy stock volatility | Short-term forecasting | Volatilität | Volatility | Erneuerbare Energie | Renewable energy | Prognoseverfahren | Forecasting model | Markov-Kette | Markov chain | Börsenkurs | Share price | Prognose | Forecast | Energieprognose | Energy forecast | ARCH-Modell | ARCH model | Schätzung | Estimation |
-
Forecasting volatility of wind power production
Shen, Zhiwei, (2015)
-
Pair trading based on quantile forecasting of smooth transition GARCH models
Chen, Cathy W. S., (2017)
-
Volatility forecasting of clean energy ETF using GARCH-MIDAS with neural network model
Zhang, Li, (2024)
- More ...
-
Southern oscillation : great value of its trends for forecasting crude oil spot price volatility
Hong, Yanran, (2023)
-
Hong, Yanran, (2023)
-
Wang, Lu, (2023)
- More ...