Forecasting Risk Measures Using Intraday Data in a Generalized Autoregressive Score (GAS) Framework
Year of publication: |
2019
|
---|---|
Authors: | Lazar, Emese |
Other Persons: | Xue, Xiaohan (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Risikomaß | Risk measure | Messung | Measurement | Theorie | Theory | ARCH-Modell | ARCH model |
Extent: | 1 Online-Ressource (32 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments May 29, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3395888 [DOI] |
Classification: | C14 - Semiparametric and Nonparametric Methods ; C32 - Time-Series Models ; c58 ; G17 - Financial Forecasting ; G32 - Financing Policy; Capital and Ownership Structure |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting Tail Risk Measures for Financial Time Series : An Extreme Value Approach With Covariates
James, Robert, (2021)
-
Intraday Conditional Value at Risk : A Periodic Mixed-Frequency GAS Approach
Gribisch, Bastian, (2020)
-
Louzis, Dimitrios P., (2012)
- More ...
-
Loss function-based change point detection in risk measures
Lazar, Emese, (2023)
-
Forecasting risk measures using intraday data in a generalized autoregressive score framework
Lazar, Emese, (2020)
-
Less disagreement, better forecasts : adjusted risk measures in the energy futures market
Zhang, Ning, (2023)
- More ...