Forecasting Stock Volatility : The Gains from Using Intraday Data
Year of publication: |
2018
|
---|---|
Authors: | Li, Xingyi |
Other Persons: | Zakamulin, Valeriy (contributor) |
Publisher: |
[2018]: [S.l.] : SSRN |
Subject: | Volatilität | Volatility | Börsenkurs | Share price | Prognoseverfahren | Forecasting model | ARCH-Modell | ARCH model | Kapitaleinkommen | Capital income | Schätzung | Estimation |
Extent: | 1 Online-Ressource (33 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 26, 2018 erstellt |
Other identifiers: | 10.2139/ssrn.2847059 [DOI] |
Classification: | C22 - Time-Series Models ; C53 - Forecasting and Other Model Applications ; c58 ; G17 - Financial Forecasting |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Conditional variance forecasts for long-term stock returns
Mammen, Enno, (2019)
-
Cheng, Mingmian, (2017)
-
High frequency vs. daily resolution : the economic value of forecasting volatility models
Lilla, Francesca, (2016)
- More ...
-
The Limits to Volatility Predictability : Quantifying Forecast Accuracy Across Horizons
Zakamulin, Valeriy, (2018)
-
Stock Volatility Predictability in Bull and Bear Markets
Li, Xingyi, (2019)
-
The term structure of volatility predictability
Li, Xingyi, (2020)
- More ...