Forecasting the Insolvency of U.S. Banks Using Support Vector Machines (SVM) Based on Local Learning Feature Selection
Year of publication: |
2019
|
---|---|
Authors: | Papadimitriou, Theophilos |
Other Persons: | Gogas, Periklis (contributor) ; Plakandaras, Vasilios (contributor) ; Mourmouris, John (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Mustererkennung | Pattern recognition | USA | United States | Insolvenz | Insolvency | Prognoseverfahren | Forecasting model | Kreditwürdigkeit | Credit rating | Bank | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory |
Description of contents: | Abstract [papers.ssrn.com] |
Extent: | 1 Online-Ressource |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: International Journal of Computational Economics and Econometrics, 2013 Vol.3 No.1/2, pp.83 - 90 Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 7, 2013 erstellt Volltext nicht verfügbar |
Classification: | G21 - Banks; Other Depository Institutions; Mortgages |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Is artificial intelligence really more accurate in predicting bankruptcy?
Letkovský, Stanislav, (2023)
-
Impact of Mortgage Soft Information in Loan Pricing on Default Prediction using Machine Learning
Luong, Mai, (2022)
-
Alonso, Andrés, (2021)
- More ...
-
Market Sentiment and Exchange Rate Directional Forecasting
Plakandaras, Vasilios, (2014)
-
Forecasting the U.S. Real House Price Index
Plakandaras, Vasilios, (2014)
-
Forecasting the U.S. real house price index
Plakandaras, Vasilios, (2015)
- More ...