Forecasting the realized variance of oil-price returns using machine learning : is there a role for U.S. state-level uncertainty?
Year of publication: |
2022
|
---|---|
Authors: | Çepni, Oğuzhan ; Gupta, Rangan ; Pienaar, Daniel ; Pierdzioch, Christian |
Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 114.2022, p. 1-14
|
Subject: | Aggregate and regional uncertainties | Forecasting | Machine learning | Oil price | Realized variance | Künstliche Intelligenz | Artificial intelligence | USA | United States | Prognoseverfahren | Forecasting model | Volatilität | Volatility | Ölpreis | Varianzanalyse | Analysis of variance |
-
Do oil-price shocks predict the realized variance of U.S. REITs?
Bonato, Matteo, (2021)
-
Bonato, Matteo, (2023)
-
Forecasting the volatility of crude oil futures using intraday data
Sévi, Benoît, (2014)
- More ...
-
Climate risks and realized volatility of major commodity currency exchange rates
Bonato, Matteo, (2022)
-
Do oil-price shocks predict the realized variance of U.S. REITs?
Bonato, Matteo, (2021)
-
Bonato, Matteo, (2022)
- More ...