Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation
Year of publication: |
2021
|
---|---|
Authors: | Merlo, Luca ; Petrella, Lea ; Raponi, Valentina |
Published in: |
Journal of banking & finance. - Amsterdam [u.a.] : Elsevier, ISSN 0378-4266, ZDB-ID 752905-3. - Vol. 133.2021, p. 1-18
|
Subject: | CAViaR | Expected shortfall | Multiple quantiles | Multivariate asymmetric laplace distribution | Quantile regression | Value at risk | Risikomaß | Risk measure | Regressionsanalyse | Regression analysis | Portfolio-Management | Portfolio selection | Theorie | Theory | Schätzung | Estimation | Prognoseverfahren | Forecasting model | Statistische Verteilung | Statistical distribution | Kapitaleinkommen | Capital income | VAR-Modell | VAR model |
-
Dynamic tail risk forecasting : what do realized skewness and kurtosis add?
Gallo, Giampiero M., (2024)
-
Taylor, James W., (2019)
-
Forecasting the return distribution using high-frequency volatility measures
Hua, Jian, (2013)
- More ...
-
Sectoral decomposition of CO2 world emissions : A joint quantile regression approach
Merlo, Luca, (2020)
-
Inter-order relations between equivalence for Lp-quantiles of the Student's t distribution
Bignozzi, Valeria, (2024)
-
Selection of value at risk models for energy commodities
Laporta, Alessandro G., (2018)
- More ...