Forecasting worldwide empty container availability with machine learning techniques
Year of publication: |
2022
|
---|---|
Authors: | Martius, Christoph ; Kretschmann, Lutz ; Zacharias, Miriam ; Jahn, Carlos ; John, Ole |
Published in: |
Journal of Shipping and Trade (JST). - ISSN 2364-4575. - Vol. 7.2022, 1, p. 1-24
|
Publisher: |
London : SpringerOpen |
Subject: | Empty container relocation | Machine learning | Maritime logistics forecasts | Mixture density network |
-
Forecasting worldwide empty container availability with machine learning techniques
Martius, Christoph, (2022)
-
Stochastic loss reserving with mixture density neural networks
Al-Mudafer, Muhammed Taher, (2022)
-
Moritz, Steffen, (2024)
- More ...
-
Forecasting worldwide empty container availability with machine learning techniques
Martius, Christoph, (2022)
-
A first step towards automated image-based container inspections
Klöver, Steffen, (2020)
-
A first step towards automated image-based container inspections
Klöver, Steffen, (2020)
- More ...