Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure
Year of publication: |
2009-04
|
---|---|
Authors: | Choi, Myung Jin ; Chandrasekaran, Venkat ; Willsky, Alan S. |
Publisher: |
Institute of Electrical and Electronics Engineers |
Subject: | multiresolution (MR) models | multipole methods | hidden variables | graphical models | Gauss | Markov random fields |
-
Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables
Allman, Elizabeth S., (2015)
-
Econometric Inference, Cyclical Fluctuations, and Superior Information
Normandin, Michel, (2004)
-
De-Losso, Rodrigo, (2012)
- More ...
-
False discovery and its control in low rank estimation
Taeb, Armeen, (2020)
-
How do the structure and the parameters of Gaussian tree models affect structure learning?
Tan, Vincent Yan Fu, (2009)
-
Learning Gaussian Tree Models: Analysis of Error Exponents and Extremal Structures
Tan, Vincent Y. F., (2008)
- More ...