Generalized Random Utility Models with Multiple Types
We propose a model for demand estimation in multi-agent, differentiated product settings and present an estimation algorithm that uses reversible jump MCMC techniques to classify agents' types. Our model extends the popular setup in Berry, Levinsohn and Pakes (1995) to allow for the data-driven classification of agents' types using agent-level data. We focus on applications involving data on agents' ranking over alternatives, and present theoretical conditions that establish the identifiability of the model and uni-modality of the likelihood/posterior. Results on both real and simulated data provide support for the scalability of our approach.
Year of publication: |
2013
|
---|---|
Authors: | Azari Soufiani, Hossein ; Diao, Hansheng ; Lai, Zhenyu ; Parkes, David C. |
Institutions: | Department of Economics, Harvard University |
Saved in:
Saved in favorites
Similar items by person
-
Estimating Dynamic Discrete-Choice Games of Incomplete Information
Egesdal, Michael, (2014)
-
Exclusive preferential placement as search diversion : evidence from flight search
Edelman, Benjamin, (2013)
-
Estimating dynamic discrete-choice games of incomplete information
Egesdal, Michael, (2015)
- More ...