Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments
Year of publication: |
2018
|
---|---|
Authors: | Chernozhukov, Victor |
Other Persons: | Demirer, Mert (contributor) ; Duflo, Esther (contributor) ; Fernández‐Val, Iván (contributor) |
Publisher: |
[2018]: [S.l.] : SSRN |
Subject: | Kausalanalyse | Causality analysis | Künstliche Intelligenz | Artificial intelligence | Experiment |
Extent: | 1 Online-Ressource (40 p) |
---|---|
Series: | NBER Working Paper ; No. w24678 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 2018 erstellt |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Prest, Brian C., (2023)
-
Calibration of heterogeneous treatment effects in randomized experiments
Leng, Yan, (2024)
-
Using machine learning for efficient flexible regression adjustment in economic experiments
List, John A., (2024)
- More ...
-
Double machine learning for treatment and causal parameters
Chernozhukov, Victor, (2016)
-
Generic machine learning inference on heterogenous treatment effects in randomized experiments
Chernozhukov, Victor, (2018)
-
Generic machine learning inference on heterogenous treatment effects in randomized experiments
Chernozhukov, Victor, (2017)
- More ...