Global convergence of model function based Bregman proximal minimization algorithms
| Year of publication: |
2021
|
|---|---|
| Authors: | Mukkamala, Mahesh Chandra ; Fadili, Jalal ; Ochs, Peter |
| Published in: |
Journal of Global Optimization. - New York, NY : Springer US, ISSN 1573-2916. - Vol. 83.2021, 4, p. 753-781
|
| Publisher: |
New York, NY : Springer US |
| Subject: | Composite minimization | Bregman proximal minimization algorithms | Model function framework | Bregman distance | Global convergence | Kurdyka–Łojasiewicz property |
-
Cohen, Eyal, (2025)
-
Efficiency of stochastic coordinate proximal gradient methods on nonseparable composite optimization
Necoara, Ion, (2025)
-
Jolaoso, Lateef Olakunle, (2021)
- More ...
-
Simulation of Gegenbauer processes using wavelet packets
Collet, Jérôme, (2005)
-
Adaptive wavelet estimation of a function in an indirect regression model
Chesneau, Christophe, (2012)
-
Adaptive estimation of an additive regression function from weakly dependent data
Chesneau, Christophe, (2015)
- More ...