Global low carbon transitions in the power sector : a machine learning clustering approach using archetypes
| Year of publication: |
2024
|
|---|---|
| Authors: | Alotaiq, Abdullah |
| Published in: |
Journal of economy and technology. - Amsterdam : Elsevier B.V. on behalf of KeAi Communications Co., Ltd., ISSN 2949-9488, ZDB-ID 3188375-8. - Vol. 2.2024, p. 95-127
|
| Subject: | Archetypes | Energy transition | Fossil fuels | Power plants | Renewable energy | Erneuerbare Energie | Treibhausgas-Emissionen | Greenhouse gas emissions | Fossile Energie | Fossil fuel | Nachhaltige Energieversorgung | Sustainable energy supply | Welt | World | Künstliche Intelligenz | Artificial intelligence | Klimaschutz | Climate protection | Energiewirtschaft | Energy sector | Kraftwerk | Power plant |
-
Alotaiq, Abdullah, (2024)
-
Mega-regional trade agreements and decarbonization
Leal-Arcas, Rafael, (2022)
-
Market perspective on climate actions and clean energy transition
Xia, Qinqin, (2025)
- More ...
-
Strategies to achieving deep decarbonisation in power generation : a review
Alotaiq, Abdullah, (2025)
-
Alotaiq, Abdullah, (2024)
- More ...