GPGPUs in computational finance: Massive parallel computing for American style options
The pricing of American style and multiple exercise options is a very challenging problem in mathematical finance. One usually employs a Least-Square Monte Carlo approach (Longstaff-Schwartz method) for the evaluation of conditional expectations which arise in the Backward Dynamic Programming principle for such optimal stopping or stochastic control problems in a Markovian framework. Unfortunately, these Least-Square Monte Carlo approaches are rather slow and allow, due to the dependency structure in the Backward Dynamic Programming principle, no parallel implementation; whether on the Monte Carlo levelnor on the time layer level of this problem. We therefore present in this paper a quantization method for the computation of the conditional expectations, that allows a straightforward parallelization on the Monte Carlo level. Moreover, we are able to develop for AR(1)-processes a further parallelization in the time domain, which makes use of faster memory structures and therefore maximizes parallel execution. Finally, we present numerical results for a CUDA implementation of this methods. It will turn out that such an implementation leads to an impressive speed-up compared to a serial CPU implementation.
Year of publication: |
2011-01
|
---|---|
Authors: | Gilles Pag\`es ; Wilbertz, Benedikt |
Institutions: | arXiv.org |
Saved in:
Saved in favorites
Similar items by person
-
Dual Quantization for random walks with application to credit derivatives
Gilles Pag\`es, (2009)
-
How to speed up the quantization tree algorithm with an application to swing options
Bronstein, Anne Laure, (2010)
-
Dual quantization for random walks with application to credit derivatives
Pagès, Gilles, (2012)
- More ...