Gradient-based smoothing parameter selection for nonparametric regression estimation
Year of publication: |
2015
|
---|---|
Authors: | Henderson, Daniel J. ; Li, Qi ; Parmeter, Christopher F. ; Yao, Shuang |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 184.2015, 2, p. 233-241
|
Subject: | Gradient estimation | Kernel smoothing | Least squares cross validation | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Regressionsanalyse | Regression analysis |
-
Xie, Qichang, (2020)
-
Backfitting and smooth backfitting in varying coefficient quantile regression
Lee, Young K., (2014)
-
npbr : a package for nonparametric boundary regression in R
Daouia, Abdelaati, (2015)
- More ...
-
Gradient-based smoothing parameter selection for nonparametric regression estimation
Henderson, Daniel J., (2015)
-
Gradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation
Henderson, Daniel J., (2013)
-
Smooth coefficient estimation of a seemingly unrelated regression
Henderson, Daniel J., (2015)
- More ...