Gram-Charlier methods, regime-switching and stochastic volatility in exponential Lévy models
Year of publication: |
2022
|
---|---|
Authors: | Asmussen, Søren ; Bladt, Mogens |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 22.2022, 4, p. 675-689
|
Subject: | Bell polynomials | CGMY process | Cumulants | European call option | Faà di Bruno's formula | Integrated CIR process | Markov additive process | Markov-modulation | Matrix-exponentials | Normal inverse Gaussian distribution | Risk neutrality | Tempered stable distribution | Stochastischer Prozess | Stochastic process | Optionspreistheorie | Option pricing theory | Statistische Verteilung | Statistical distribution | Volatilität | Volatility | Markov-Kette | Markov chain | Wahrscheinlichkeitsrechnung | Probability theory | Risikoneutralität |
-
A Markov chain approximation scheme for option pricing under skew diffusions
Ding, Kailin, (2021)
-
Which is the right option for Indian market : Gaussian, normal inverse Gaussian, or Tsallis?
Chakrabarti, Prasenjit, (2019)
-
Anatomy of a meltdown : the risk neutral density for the S&P 500 in the fall of 2008
Birru, Justin, (2012)
- More ...
-
Exponential families generated by phase-type distributions and other Markov lifetimes
Asmussen, Søren, (1989)
-
On some two-sex population models
Asmussen, Søren, (1978)
-
Applied probability and queues
Asmussen, Søren, (1987)
- More ...