Grapham: Graphical models with adaptive random walk Metropolis algorithms
Recently developed adaptive Markov chain Monte Carlo (MCMC) methods have been applied successfully to many problems in Bayesian statistics. Grapham is a new open source implementation covering several such methods, with emphasis on graphical models for directed acyclic graphs. The implemented algorithms include the seminal Adaptive Metropolis algorithm adjusting the proposal covariance according to the history of the chain and a Metropolis algorithm adjusting the proposal scale based on the observed acceptance probability. Different variants of the algorithms allow one, for example, to use these two algorithms together, employ delayed rejection and adjust several parameters of the algorithms. The implemented Metropolis-within-Gibbs update allows arbitrary sampling blocks. The software is written in C and uses a simple extension language Lua in configuration.
Year of publication: |
2010
|
---|---|
Authors: | Vihola, Matti |
Published in: |
Computational Statistics & Data Analysis. - Elsevier, ISSN 0167-9473. - Vol. 54.2010, 1, p. 49-54
|
Publisher: |
Elsevier |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Adaptive Metropolis algorithm using variational Bayesian adaptive Kalman filter
Mbalawata, Isambi S., (2015)
-
Stochastic order characterization of uniform integrability and tightness
Leskelä, Lasse, (2013)
-
On the stability and ergodicity of adaptive scaling Metropolis algorithms
Vihola, Matti, (2011)
- More ...