Harnessing machine learning for real-time inflation nowcasting
Year of publication: |
[2024] ; This version: February 2024
|
---|---|
Authors: | Schnorrenberger, Richard ; Schmidt, Aishameriane ; Moura, Guilherme Valle |
Publisher: |
Amsterdam, The Netherlands : De Nederlandsche Bank NV |
Subject: | inflation nowcasting | machine learning | mixed-frequency data | survey ofprofessional forecasters | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Inflation | Prognose | Forecast | Bruttoinlandsprodukt | Gross domestic product | Inflationsrate | Inflation rate |
Extent: | 1 Online-Ressource (circa 43 Seiten) Illustrationen |
---|---|
Series: | DNB working papers. - Amsterdam : DNB, ZDB-ID 2435220-2. - Vol. no. 806 (March 2024) |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Malladi, Rama K., (2024)
-
Forecasting inflation in the US and in the euro area
Bańbura, Marta, (2024)
-
Conditional superior predictive ability
Li, Jia, (2022)
- More ...
-
Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany
Beck, Günter W., (2023)
-
Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany
Beck, Günter W., (2024)
-
Forecasting HICP package holidays with forward-looking booking data
Schnorrenberger, Richard, (2024)
- More ...