Hedging the drift : learning to optimize under nonstationarity
Year of publication: |
2022
|
---|---|
Authors: | Cheung, Wang Chi ; Simchi-Levi, David ; Zhu, Ruihao |
Published in: |
Management science : journal of the Institute for Operations Research and the Management Sciences. - Hanover, Md. : INFORMS, ISSN 1526-5501, ZDB-ID 2023019-9. - Vol. 68.2022, 3, p. 1696-1713
|
Subject: | data-driven decision-making | non-stationary bandit optimization | parameter-free algorithms | Hedging | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Lernprozess | Learning process | Algorithmus | Algorithm | Entscheidung | Decision | Stochastischer Prozess | Stochastic process | Portfolio-Management | Portfolio selection |
-
Han, Biao, (2021)
-
Scenario cluster Lagrangean decomposition for risk averse in multistage stochastic optimization
Escudero, Laureano F., (2017)
-
CVaR hedging using quantization-based stochastic approximation algorithm
Bardou, O., (2016)
- More ...
-
Non-Stationary Reinforcement Learning : The Blessing of (More) Optimism
Cheung, Wang Chi, (2021)
-
Nonstationary reinforcement learning : the blessing of (more) optimism
Cheung, Wang Chi, (2023)
-
Calibrating sales forecasts in a pandemic using competitive online nonparametric regression
Simchi-Levi, David, (2024)
- More ...