Hedging using reinforcement learning : contextual k-armed bandit versus Q-learning
Year of publication: |
2023
|
---|---|
Authors: | Cannelli, Loris ; Nuti, Giuseppe ; Sala, Marzio ; Szehr, Oleg |
Published in: |
The Journal of finance and data science : JFDS. - Amsterdam [u.a.] : Elsevier, ISSN 2405-9188, ZDB-ID 2837532-4. - Vol. 9.2023, Art.-No. 100101, p. 1-22
|
Subject: | Hedging | Multi-Armed Bandits | Q-Learning | Reinforcement Learning | Lernen | Learning | Lernprozess | Learning process | Spieltheorie | Game theory |
-
Reinforcement learning in economics and finance
Charpentier, Arthur, (2023)
-
Choosing a good toolkit, I : prior-free heuristics
Francetich, Alejandro, (2020)
-
The QLBS Q-Learner goes NuQLear : fitted Q iteration, inverse RL, and option portfolios
Halperin, Igor, (2019)
- More ...
-
Overfitting in portfolio optimization
Maggiolo, Matteo, (2023)
-
Hedging of financial derivative contracts via Monte Carlo tree search
Szehr, Oleg, (2023)
- More ...