Hierarchical RNN-based framework for throughput prediction in automotive production systems
| Year of publication: |
2024
|
|---|---|
| Authors: | Chen, Mengfei ; Furness, Richard ; Gupta, Rajesh ; Puchala, Saumuy ; Guo, Weihong |
| Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 62.2024, 5, p. 1699-1714
|
| Subject: | automotive production | feature selection | product throughput prediction | Recurrent neural network | sequential data analysis | Kfz-Industrie | Automotive industry | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Produktionssystem | Manufacturing system | Theorie | Theory |
-
Supporting of manufacturing system based on demand forecasting tool
Kmiecik, Mariusz, (2022)
-
Residual value forecasting using asymmetric cost functions
Dress, Korbinian, (2018)
-
Gleue, Christoph, (2019)
- More ...
-
Chen, Mengfei, (2025)
-
A systematic review of food accessibility in the food supply chains
Liu, Bochi, (2025)
-
Guo, Weihong, (2020)
- More ...