Hierarchical transfer learning with applications to electricity load forecasting
Year of publication: |
2024
|
---|---|
Authors: | Antoniadis, Anestis ; Gaucher, Solenne ; Goude, Yannig |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier Science, ISSN 0169-2070, ZDB-ID 1495951-3. - Vol. 40.2024, 2, p. 641-660
|
Subject: | Aggregation of experts | Combining forecasts | Demand forecasting | Random forest | Semi-parametric additive model | Time series | Transfer learning | Prognoseverfahren | Forecasting model | Theorie | Theory | Zeitreihenanalyse | Time series analysis | Lernprozess | Learning process | Nachfrage | Demand | Aggregation | Prognose | Forecast | Nichtparametrisches Verfahren | Nonparametric statistics | Energieprognose | Energy forecast | Elektrizität | Electricity |
-
A refined parametric model for short term load forecasting
Charlton, Nathaniel, (2014)
-
Online hierarchical forecasting for power consumption data
Brégère, Margaux, (2022)
-
GEFCom2012 : electric load forecasting and backcasting with semi-parametric models
Nedellec, Raphael, (2014)
- More ...
-
Amato, Umberto, (2021)
-
Clustering electricity consumers using high‐dimensional regression mixture models
Devijver, Emilie, (2019)
-
Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach
Cho, Haeran, (2013)
- More ...