High breakdown mixture discriminant analysis
Robust S-estimation is proposed for multivariate Gaussian mixture models generalizing the work of Hastie and Tibshirani (J. Roy. Statist. Soc. Ser. B 58 (1996) 155). In the case of Gaussian Mixture models, the unknown location and scale parameters are estimated by the EM algorithm. In the presence of outliers, the maximum likelihood estimators of the unknown parameters are affected, resulting in the misclassification of the observations. The robust S-estimators of the unknown parameters replace the non-robust estimators from M-step of the EM algorithm. The results were compared with the standard mixture discriminant analysis approach using the probability of misclassification criterion. This comparison showed a slight reduction in the average probability of misclassification using robust S-estimators as compared to the standard maximum likelihood estimators.
Year of publication: |
2005
|
---|---|
Authors: | Bashir, Shaheena ; Carter, E. M. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 93.2005, 1, p. 102-111
|
Publisher: |
Elsevier |
Keywords: | Mixture models EM algorithm S-Estimators Breakdown point |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Penalized multinomial mixture logit model
Bashir, Shaheena, (2010)
-
Empirical Bayes Estimation for Combinations of Multivariate Bioassays
Chen, D. G., (1999)
-
Carter, E. M., (1977)
- More ...