High frequency volatility forecasting : a new approach using a hybrid ANN-MC-GARCH model
Year of publication: |
2023
|
---|---|
Authors: | Jumoorty, Aneessa Firdaus ; Thoplan, Ruben ; Narsoo, Jason |
Published in: |
International journal of finance & economics : IJFE. - Chichester [u.a.] : Wiley, ISSN 1099-1158, ZDB-ID 1493204-0. - Vol. 28.2023, 4, p. 4156-4175
|
Subject: | artificial neural network | high frequency | hybrid ANN-MC-GARCH | MC-GARCH | volatility forecasts | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Theorie | Theory | ARCH-Modell | ARCH model |
-
GJR-GARCH volatility modeling under NIG and ANN for predicting top cryptocurrencies
Mostafa, Fahad, (2021)
-
A hybrid neural network GARCH approach to forecasting Zimbabwean inflation volatility
Chitambo, Nigel E. N., (2021)
-
Volatility forecasting with machine learning and intraday commonality
Zhang, Chao, (2024)
- More ...
-
Early human capital : the driving force to economic growth in island economies
Tandrayen-Ragoobur, Verena, (2022)
-
Performance analysis of portfolio optimisation strategies : evidence from the exchange market
Narsoo, Jason, (2017)
-
Financial crisis and informal sector women entrepreneurs in Mauritius
Kasseeah, Harshana, (2014)
- More ...