How big should your data really be? : data-driven newsvendor : learning one sample at a time
Year of publication: |
2023
|
---|---|
Authors: | Besbes, Omar ; Mouchtaki, Omar |
Published in: |
Management science : journal of the Institute for Operations Research and the Management Sciences. - Hanover, Md. : INFORMS, ISSN 1526-5501, ZDB-ID 2023019-9. - Vol. 69.2023, 10, p. 5848-5865
|
Subject: | data-driven decisions | distributionally robust optimization | empirical optimization | finite samples | limited data | minimax regret | sample average approximation | Stichprobenerhebung | Sampling | Theorie | Theory | Robustes Verfahren | Robust statistics | Entscheidung unter Unsicherheit | Decision under uncertainty | Mathematische Optimierung | Mathematical programming |
-
Robust unit commitment with n-1 security criteria
Goutani, Arash, (2016)
-
Technical note: two-stage sample robust optimization
Bertsimas, Dimitris, (2022)
-
Robust stochastic models for profit-maximizing hub location problems
Taherkhani, Gita, (2021)
- More ...
-
Beyond IID : Data-Driven Decision-Making in Heterogeneous Environments
Besbes, Omar, (2022)
-
Quality vs. Quantity of Data in Contextual Decision-Making : Exact Analysis under Newsvendor Loss
Besbes, Omar, (2023)
-
How Big Should Your Data Really Be? Data-Driven Newsvendor : Learning One Sample at a Time
Besbes, Omar, (2022)
- More ...