How much do we see? : on the explainability of partial dependence plots for credit risk scoring
Year of publication: |
2023
|
---|---|
Authors: | Szepannek, Gero ; Lübke, Karsten |
Published in: |
Argumenta oeconomica. - [Wrocław] : [Wrocław University of Economics], ZDB-ID 2892843-X. - Vol. 50.2023, 1, p. 137-150
|
Subject: | credit scoring | explainability | interpretable machine learning | partial dependence plot | Kreditwürdigkeit | Credit rating | Kreditrisiko | Credit risk | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory |
-
Kim, Dong-sup, (2021)
-
Machine learning explainability in finance : an application to default risk analysis
Bracke, Philippe, (2019)
-
Hashimoto, Ryuichiro, (2023)
- More ...
-
Different Subspace Classification
Luebke, Karsten, (2004)
-
Application of a Genetic Algorithm to Variable Selection in Fuzzy Clustering
Röver, Christian, (2004)
-
Variable selection for discrimination of more than two classes where data are sparse
Szepannek, Gero, (2005)
- More ...