How to overcome modelling and model risk management challenges with artificial intelligence and machine learning
Year of publication: |
2019
|
---|---|
Authors: | Mayenberger, Daniel |
Published in: |
Journal of risk management in financial institutions. - London : Henry Stewart Publ., ISSN 1752-8887, ZDB-ID 2416788-5. - Vol. 12.2018/2019, 3, p. 241-255
|
Subject: | artificial intelligence | assumption testing | black box explanation | machine learning | model risk management | opacity | performance testing | Künstliche Intelligenz | Artificial intelligence | Risikomanagement | Risk management | Portfolio-Management | Portfolio selection |
-
Hill, Jon R., (2019)
-
Hill, Jon R., (2020)
-
Al Janabi, Mazin A. M., (2024)
- More ...
-
Reverse Stress Testing in Banking : A Comprehensive Guide
Ahmad, Nasir, (2021)
-
Reverse stress testing in banking : a comprehensive guide
Eichhorn, Michael, (2021)
-
Explainable artificial intelligence : a gobal fast approach
Mayenberger, Daniel, (2021)
- More ...