How to use no-code artificial intelligence to predict and minimize the inventory distortions for resilient supply chains
| Year of publication: |
2024
|
|---|---|
| Authors: | Jauhar, Sunil Kumar ; Jani, Shashank Mayurkumar ; Kamble, Sachin S. ; Pratap, Saurabh ; Belhadi, Amine ; Gupta, Shivam |
| Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 62.2024, 15, p. 5510-5534
|
| Subject: | Inventory distortion | No-Code Artificial Intelligence (NCAI) | out-of-stocks | overstocks | supply chain resilience | Lieferkette | Supply chain | Künstliche Intelligenz | Artificial intelligence | Lagermanagement | Warehouse management | Risikomanagement | Risk management | Lagerhaltungsmodell | Inventory model |
-
Roles of inventory and reserve capacity in mitigating supply chain disruption risk
Lücker, Florian, (2019)
-
An artificial intelligence framework for recycling dormant and obsolete inventory in supply Chains
Raouf, Youssef, (2025)
-
Shokri, Alireza, (2025)
- More ...
-
Jauhar, Sunil Kumar, (2024)
-
Digital transformation technologies to analyze product returns in the e-commerce industry
Jauhar, Sunil Kumar, (2023)
-
Belhadi, Amine, (2023)
- More ...