Identifying Informative Audit Quality Indicators (IAQI) Using Machine Learning
Year of publication: |
[2021]
|
---|---|
Authors: | Zhang, Chanyuan (Abigail) ; Vasarhelyi, Miklos ; Cho, Soohyun |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Wirtschaftsprüfung | Financial audit | Dienstleistungsqualität | Service quality | Qualitätsmanagement | Quality management | Prognoseverfahren | Forecasting model |
Extent: | 1 Online-Ressource (55 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments Feb 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3981622 [DOI] |
Classification: | C53 - Forecasting and Other Model Applications ; M41 - Accounting ; M42 - Auditing |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Is the external audit report useful for bankruptcy prediction?
Muñoz-Izquierdo, Nora, (2019)
-
The role of joint audit in audit quality - Practitioners’ insights
Marnet, Oliver, (2022)
-
Regulatory Investigations of Audit Partners and Audit Quality Improvement
Ge, Rui, (2017)
- More ...
-
Explainable Artificial Intelligence (XAI) in Auditing
Zhang, Chanyuan (Abigail), (2022)
-
Auditors' Going Concern Opinions (GCOs) Are Noisy and Biased – How Can We Improve Them?
Zhang, Chanyuan (Abigail), (2022)
-
Jiang, Lanxin, (2022)
- More ...