Identifying trend nature in time series using autocorrelation functions and stationarity tests
Year of publication: |
2024
|
---|---|
Authors: | Boutahar, Mohamed ; Royer-Carenzi, M. |
Published in: |
International journal of computational economics and econometrics : IJCEE. - Genève [u.a.] : Inderscience Enterprises, ISSN 1757-1189, ZDB-ID 2545120-0. - Vol. 14.2024, 1, p. 1-22
|
Subject: | autocorrelation functions | deterministic or stochastic trend | Dickey-Fuller | KPSS | OPP test | spurious unit root | stationarity | time series | trend detection | unit root tests | Statistische Methodenlehre | Statistical theory | Einheitswurzeltest | Unit root test | Zeitreihenanalyse | Time series analysis | Schätztheorie | Estimation theory | Autokorrelation | Autocorrelation | Stochastischer Prozess | Stochastic process |
-
Testing for strict stationarity in a random coefficient autoregressive model
Trapani, Lorenzo, (2021)
-
A fractional integration model with autoregressive processes
Caporale, Guglielmo Maria, (2025)
-
An approach to arrive at stationarity in time series data
Basariya, M. I. Nafeesathul, (2022)
- More ...
-
Behaviour of skewness, kurtosis and normality tests in long memory data
Boutahar, Mohamed, (2010)
-
Optimal prediction with nonstationary ARFIMA model
Boutahar, Mohamed, (2007)
-
Least squares estimator for regression models with some deterministic time varying parameters
Boutahar, Mohamed, (1996)
- More ...