Implementation of deep learning models in predicting ESG index volatility
Year of publication: |
2024
|
---|---|
Authors: | Bhandari, Hum Nath ; Nawa Raj Pokhrel ; Rimal, Ramchandra ; Keshab Raj Dahal ; Rimal, Binod |
Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 10.2024, Art.-No. 75, p. 1-24
|
Subject: | ESG investing | ESG index | Deep learning | Machine learning | Volatility prediction | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Nachhaltige Kapitalanlage | Sustainable investment | Prognoseverfahren | Forecasting model | Corporate Social Responsibility | Corporate social responsibility | Aktienindex | Stock index | Lernprozess | Learning process | Kapitalmarktrendite | Capital market returns |
-
Asset returns in deep learning methods : an empirical analysis on SSE 50 and CSI 300
Li, Weiping, (2020)
-
Returns behavior of ESG ETFs in the COVID-19 market crash : are green funds more resilient?
ElBannan, Mona A., (2024)
-
Forecasting crude oil returns with oil-related industry ESG indices
Li, Kaixin, (2024)
- More ...
-
Predicting the direction of NEPSE index movement with news headlines using machine learning
Keshab Raj Dahal, (2024)
-
Estimation and clustering in popularity adjusted block model
Noroozi, Majid, (2021)
- More ...