Implications for the Dirichlet Processes Mixture Linear Model on U.S. Crop Yield Predictions
Year of publication: |
2023
|
---|---|
Authors: | Addey, Kwame ; Shaik, Saleem ; Nganje, William ; SenGupta, Indranil |
Publisher: |
[S.l.] : SSRN |
Subject: | Ernteertrag | Crop yield | USA | United States | Prognoseverfahren | Forecasting model | Theorie | Theory |
Extent: | 1 Online-Ressource (35 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 8, 2023 erstellt |
Other identifiers: | 10.2139/ssrn.4382591 [DOI] |
Classification: | C11 - Bayesian Analysis ; Q10 - Agriculture. General ; Q16 - R&D; Agricultural Technology; Agricultural Extension Services ; Q54 - Climate; Natural Disasters |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A Deep Factor Model for Crop Yield Forecasting and Insurance Ratemaking
Zhu, Wenjun, (2023)
-
Determinants of U.S. Corn and Soybean Yields : Impact of Climate Change and Crop Prices
Huang, Haixiao, (2013)
-
McFadden, Jonathan R., (2022)
- More ...
-
Stochastic analysis and neural network-based yield prediction with precision agriculture
Shoshi, Humayra, (2021)
-
Stochastic analysis and neural network-based yield prediction with precision agriculture
Shoshi, Humayra, (2021)
-
Barndorff-Nielsen and Shephard model : oil hedging with variance swap and option
SenGupta, Indranil, (2019)
- More ...