Improved marginal likelihood estimation via power posteriors and importance sampling
Year of publication: |
2023
|
---|---|
Authors: | Li, Yong ; Wang, Nianling ; Yu, Jun |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 234.2023, 1, p. 28-52
|
Subject: | Bayes factor | Marginal likelihood | Markov Chain Monte Carlo | Model choice | Power posteriors | Importance sampling | Stichprobenerhebung | Sampling | Markov-Kette | Markov chain | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Bayes-Statistik | Bayesian inference | Maximum-Likelihood-Schätzung | Maximum likelihood estimation |
-
Ardia, David, (2009)
-
A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihoods
Ardia, David, (2010)
-
Joint Bayesian analysis of parameters and states in nonlinear, non-Gaussian state space models
Barra, István, (2014)
- More ...
-
Hypothesis testing via posterior-test-based Bayes factors
Li, Yong, (2023)
-
Asymmetric Correlations in Predicting Portfolio Returns*
Wang, Nianling, (2019)
-
Estimation and forecast of carbon emission market volatility based on model averaging method
Wang, Nianling, (2025)
- More ...