Improvement in Hurst exponent estimation and its application to financial markets
Year of publication: |
2022
|
---|---|
Authors: | Gómez-Águila, A. ; Trinidad Segovia, Juan Evangelista ; Sánchez-Granero, M. A. |
Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 8.2022, Art.-No. 86, p. 1-21
|
Subject: | FD algortihms | Financial market | GHE algorithm | Hurst exponent | Long memory | TA algorithm | Finanzmarkt | Zeitreihenanalyse | Time series analysis | Volatilität | Volatility | Algorithmus | Algorithm | Schätztheorie | Estimation theory | Börsenkurs | Share price | Kapitaleinkommen | Capital income |
-
Volatility estimation when the zero-process is nonstationary
Francq, Christian, (2023)
-
Tail risk and long memory in financial markets
Nguyen, Duc Binh Benno, (2018)
-
Modeling CAC40 volatility using ultra-high frequency data
Degiannakis, Stavros, (2013)
- More ...
-
Market Beta is not dead : an approach from Random Matrix Theory
Molero-González, L., (2023)
-
Extending the Fama and French model with a long term memory factor
López-García, M. N., (2021)
-
Quantitative methods for economics and finance
Trinidad Segovia, Juan Evangelista, (2021)
- More ...