Improving Accuracy Without Losing Interpretability : A Machine Learning Approach for Time Series Forecasting
Year of publication: |
2022
|
---|---|
Authors: | Sun, Yiqi ; Shen, Zuo-Jun Max |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Theorie | Theory |
Description of contents: | Abstract [papers.ssrn.com] |
Extent: | 1 Online-Ressource |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 1, 2022 erstellt Volltext nicht verfügbar |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Vancsura, László, (2023)
-
Evaluating interpretable machine learning predictions for cryptocurrencies
El Majzoub, Ahmad, (2023)
-
Giribone, Pier Giuseppe, (2018)
- More ...
-
Strengthening supply chain resilience during COVID ‐19 : A case study of JD .com
Shen, Zuo-Jun, (2021)
-
From Accuracy to Interpretability : Understanding Neural Networks in Forecast
Sun, Yiqi, (2022)
-
Strengthening supply chain resilience during COVID-19 : a case study of JD.com
Shen, Zuo-Jun, (2023)
- More ...