Improving customer value index and consumption forecasts using a weighted RFM model and machine learning algorithms
Year of publication: |
2022
|
---|---|
Authors: | Wu, Zongxiao ; Zang, Cong ; Wu, Chia-Huei ; Deng, Zilin ; Shao, Xuefeng ; Liu, Wei |
Published in: |
Journal of global information management. - Hershey, Pa. : IGI Global, ISSN 1533-7995, ZDB-ID 2070054-4. - Vol. 30.2022, 3, Art.-No. 1, p. 1-23
|
Subject: | Computing | Consumer | Consumption Forecast | Data Mining | K-Means Clustering Analysis | Marketing Strategy | Random Forest Model | RFM Model | Prognoseverfahren | Forecasting model | Data mining | Konsumentenverhalten | Consumer behaviour | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Kundenwert | Customer value |
-
Distributed model for customer churn prediction using convolutional neural network
Tariq, Muhammad Usman, (2022)
-
Predicting customers' cross-buying decisions : a two-stage machine learning approach
Kilinc, Mehmet Serdar, (2023)
-
Customer churn prediction for commercial banks using customer-value-weighted machine learning models
Wu, Zongxiao, (2021)
- More ...
-
Liu, Wei, (2021)
-
Special issue on: green innovation and international business in emerging economies
Tsai, Sang-Bing, (2021)
-
He, Liangxing, (2021)
- More ...