Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering
Year of publication: |
2024
|
---|---|
Authors: | Ducharme, Corey ; Agard, Bruno ; Trépanier, Martin |
Published in: |
Journal of forecasting. - New York, NY : Wiley Interscience, ISSN 1099-131X, ZDB-ID 2001645-1. - Vol. 43.2024, 5, p. 1661-1681
|
Subject: | demand forecasting | Industry 4.0 | intermittent demand | multivariate time series clustering | supervised learning | supply chain forecasting | Lieferkette | Supply chain | Prognoseverfahren | Forecasting model | Nachfrage | Demand | Lagerhaltungsmodell | Inventory model | Zeitreihenanalyse | Time series analysis |
-
Forecasting a customer's Next Time Under Safety Stock
Ducharme, Corey, (2021)
-
iETS : state space model for intermittent demand forecasting
Svetunkov, Ivan, (2023)
-
Using weather data to improve demand forecasting for seasonal products
Babongo, Flora, (2018)
- More ...
-
Forecasting a customer's Next Time Under Safety Stock
Ducharme, Corey, (2021)
-
Assessing data collection strategies for VMI under intermittent demand
Ducharme, Corey, (2024)
-
Measuring transit use variability with smart-card data
Morency, Catherine, (2007)
- More ...