Incomplete Markets: Convergence of Options Values under the Minimal Martingale Measure. The Multidimensional Case.
In the setting of incomplete markets, this paper presents a general result of weak convergence for derivative assets prices. It is proved that the minimal martingale measure first introduced by Follmer and Schweizer is a convenient tool for the stabilization under convergence. This extends previous well-known results when the markets are complete both in discrete time and continuous time. The result is extended to markets with several risky assets and generalizes a previous work on this subject.