Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes
This paper aims to develop new methods for statistical inference in a class of stochastic volatility models for financial data based on non-Gaussian Ornstein-Uhlenbeck (OU) processes. Our approach uses indirect inference methods: First, a quasi-likelihood for the actual data is estimated. This quasi-likelihood is based on an approximative Gaussian state space representation of the OU-based model. Next, simulations are made from the data generating OU-model for given parameter values. The indirect inference estimator is the parameter value in the OU-model which gives the best "match" between the quasi-likelihood estimator for the actual data and the quasi-likelihood estimator for the simulated data. Our method is applied to Euro/NOK and US Dollar/NOK daily exchange rates for the period 1.7.1989 until 15.12.2008. Accompanying R-package, that interfaces C++ code is documented and can be downloaded.
Year of publication: |
2009-12
|
---|---|
Authors: | Raknerud, Arvid ; Skare, Øivind |
Institutions: | Statistisk Sentralbyrå, Government of Norway |
Subject: | stochastic volatility | financial econometrics | Ornstein-Uhlenbeck processes | indirect inference | state space models | exchange rates |
Saved in: