Industrial Location Modeling: Extending the Random Utility Framework
Given sound theoretical underpinnings, the random utility maximization-based conditional logit model (CLM) serves as the principal method for applied research on industrial location decisions. Studies that implement this methodology, however, confront several problems, notably the disadvantages of the underlying Independence of Irrelevant Alternatives (IIA) assumption. This paper shows that by taking advantage of an equivalent relation between the CLM and Poisson regression likelihood functions one can more effectively control for the potential IIA violation in complex choice scenarios where the decision maker confronts a large number of narrowly defined spatial alternatives. As demonstrated here our approach to the IIA problem is compliant with the random utility (profit) maximization framework. Copyright Blackwell Publishers, 2004
Year of publication: |
2004
|
---|---|
Authors: | Guimaraes, Paulo ; Figueiredo, Octávio ; Woodward, Douglas |
Published in: |
Journal of Regional Science. - Wiley Blackwell, ISSN 0022-4146. - Vol. 44.2004, 1, p. 1-20
|
Publisher: |
Wiley Blackwell |
Saved in:
Saved in favorites
Similar items by person
-
Modeling industrial location decisions in U.S. counties
Guimaraes, Paulo, (2002)
-
Firm-worker matching in industrial clusters
Figueiredo, Octávio, (2011)
-
Modeling industrial location decisions in U.S. counties
Guimaraes, Paulo, (2002)
- More ...