Inference for functions of partially identified parameters in moment inequality models
This paper introduces a new hypothesis test for the null hypothesis H0 : f(θ) = ϒ0, where f(.) is a known function, ϒ0 is a known constant, and θ is a parameter that is partially identied by a moment (in)equality model. The main application of our test is sub-vector inference in moment inequality models, that is, for a multidimensional θ, the function f(θ) = θk selects the kth coordinate of θ. Our test controls asymptotic size uniformly over a large class of distributions of the data and has better asymptotic power properties than currently available methods. In particular, we show that the new test has asymptotic power that dominates the one corresponding to two existing competitors in the literature: subsampling and projection-based tests.
Year of publication: |
2014-01
|
---|---|
Authors: | Bugni, Federico ; Canay, Ivan ; Shi, Xiaoxia |
Institutions: | Centre for Microdata Methods and Practice (CEMMAP) |
Saved in:
Saved in favorites
Similar items by person
-
Inference for functions of partially identified parameters in moment inequality models
Bugni, Federico, (2014)
-
Specification for Partially Identified Models defined by Moment Inequalities
Bugni, Federico, (2013)
-
Specification tests for partially identified models defined by moment inequalities
Bugni, Federico, (2014)
- More ...