Inference on the maximal rank of time-varying covariance matrices using high-frequency data
Year of publication: |
[2021]
|
---|---|
Authors: | Reiß, Markus ; Winkelmann, Lars |
Publisher: |
Berlin : Freie Universität Berlin |
Subject: | empirical covariance matrix | rank detection | signal detection rate | matrix concentration | eigenvalue perturbation | principal component analysis | factor model | term structure | Korrelation | Correlation | Schätztheorie | Estimation theory | Zinsstruktur | Yield curve | Varianzanalyse | Analysis of variance | Faktorenanalyse | Factor analysis | Ranking-Verfahren | Ranking method | Hauptkomponentenanalyse | Principal component analysis | Lineare Algebra | Linear algebra | Zeitreihenanalyse | Time series analysis |
-
Spiked eigenvalues of high-dimensional separable sample covariance matrices
Zhang, Bo, (2019)
-
Inference on the maximal rank of time-varying covariance matrices using high-frequency data
Reiß, Markus, (2021)
-
Detection of multiple structural breaks in large covariance matrices
Li, Yu-Ning, (2023)
- More ...
-
Inference on the maximal rank of time-varying covariance matrices using high-frequency data
Reiß, Markus, (2021)
-
Winkelmann, Lars, (2013)
-
ECB monetary policy surprises: identification through cojumps in interest rates
Winkelmann, Lars, (2013)
- More ...