The <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\chi $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">χ</mi> </math> </EquationSource> </InlineEquation> value and team games
In this paper we employ the <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\chi $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">χ</mi> </math> </EquationSource> </InlineEquation> value (Casajus, Games Econ Behav 65(1): 49–61, <CitationRef CitationID="CR3">2009</CitationRef>)—a coalition structure value—to analyse team games (Hernández and Sánchez-Sánchez, Int J Games Theory 39(3): 319–350, <CitationRef CitationID="CR6">2010</CitationRef>) . We answer two questions for two special cases: first, which components are stable and second, how is the worth of a component divided among the members of the component. Copyright Springer Science+Business Media New York 2015
Year of publication: |
2015
|
---|---|
Authors: | Hiller, Tobias |
Published in: |
Theory and Decision. - Springer. - Vol. 78.2015, 4, p. 539-548
|
Publisher: |
Springer |
Saved in:
Saved in favorites
Similar items by person
-
Hiller, Tobias, (2011)
-
Effizienz und Stabilität von Zweckverbänden
Hiller, Tobias, (2011)
-
Portfolio structures : can they contribute to solving the low-risk puzzle?
Hiller, Tobias, (2023)
- More ...