Innovating knowledge and information for a firm-level automobile demand forecast system : a machine learning perspective
Year of publication: |
2023
|
---|---|
Authors: | Kim, Sehoon |
Published in: |
Journal of innovation & knowledge : JIK. - Amsterdam : Elsevier, ISSN 2444-569X, ZDB-ID 2885454-8. - Vol. 8.2023, 2, Art.-No. 100355, p. 1-12
|
Subject: | Automobile demand forecast | Endogenous-exogenous data | Firm-level forecast | Hybrid input | Machine learning prediction | Prediction model comparison | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Prognose | Forecast | Kfz-Markt | Automotive market | Nachfrage | Demand | Kfz-Industrie | Automotive industry |
-
Prospects for motorization based on domestic electric vehicles : analysis and scenario forecast
Milyakin, S. R., (2024)
-
Passenger car sales projections : measuring the accuracy of a sales forecasting model
Pavelková, Drahomíra, (2018)
-
Car forecast for Sweden 1972-1985
Jacobsson, Lars, (1973)
- More ...
-
Kim, Sehoon, (2024)
-
Kim, Sehoon, (2017)
-
Real effects of climate policy : financial constraints and spillovers
Bartram, Söhnke M., (2019)
- More ...