Integrated explainable deep learning prediction of harmful algal blooms
Year of publication: |
2022
|
---|---|
Authors: | Lee, Donghyun ; Kim, Mingyu ; Lee, Beomhui ; Chae, Sangwon ; Kwon, Sungjun ; Kang, Sungwon |
Published in: |
Technological forecasting & social change : an international journal. - Amsterdam : Elsevier, ISSN 0040-1625, ZDB-ID 280700-2. - Vol. 185.2022, p. 1-11
|
Subject: | Chlorophyll-a | Convolutional neural network | Deep learning | Explainable AI | Harmful algal bloom | Prediction | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Lernprozess | Learning process | Theorie | Theory |
-
Tashiro, Daigo, (2019)
-
Intelligent stock prediction : a neural network approach
Shahrour, Mohamad Hassan, (2023)
-
Artificial intelligence in asset management
Bartram, Söhnke M., (2020)
- More ...
-
Corporate Entertainment Expenses and Corruption in Public Procurement
Kang, Sungwon, (2020)
-
Corporate entertainment expenses and corruption in public procurement
Kang, Sungwon, (2023)
-
The macroeconomic implications of deficit financing under present bias
Kim, Eungsik, (2023)
- More ...