Interactive preference analysis : a reinforcement learning framework
Year of publication: |
2024
|
---|---|
Authors: | Hu, Xiao ; Kang, Siqin ; Ren, Long ; Zhu, Shaokeng |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 319.2024, 3 (16.12.), p. 983-998
|
Subject: | Decision analysis | Fintech | Investor preference derivation | Multi-armed bandit | Reinforcement learning | Lernprozess | Learning process | Präferenztheorie | Theory of preferences | Lernen | Learning | Entscheidung | Decision | Anlageverhalten | Behavioural finance | Spieltheorie | Game theory | Entscheidungstheorie | Decision theory | Finanztechnologie | Financial technology |
-
Robo-advising : learning investors' risk preferences via portfolio choices
Alsabah, Humoud, (2021)
-
Choosing a good toolkit, I : prior-free heuristics
Francetich, Alejandro, (2020)
-
Learning, experimentation and the convergence of the discovered preferences
Kapera, Marek, (2024)
- More ...
-
Assessing the economic implications of Kyat-Yuan transactions in Myanmar-China trade
Moh Moh Zaw Thin, (2024)
-
Optimal contract design with a common agency in last-mile logistics
Chu, Xiang, (2020)
-
Who benefits from online financing? : a sharing economy e-tailing platform perspective
Gong, Daqing, (2020)
- More ...