Interpolation-free deep learning for meteorological downscaling on unaligned grids across multiple domains with application to wind power
Year of publication: |
[2024]
|
---|---|
Authors: | Giroux, Jean-Sébastien ; Breton, Simon-Philippe ; Carreau, Julie |
Publisher: |
Montréal (Québec), Canada : GERAD, HÉC Montréal |
Subject: | Deep learning | probabilistic forecasts | downscaling | unaligned grids | transfer learning | scalability | Lernprozess | Learning process | Windenergie | Wind energy | Lernen | Learning | Computernetz | Computer network | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model |
-
Choices matter when training machine learning models for return prediction
Howard, Clint, (2024)
-
Saleh, Ahmad Waleed, (2023)
-
Qadri, Azam Mehmood, (2023)
- More ...
-
Status, plans and technologies for offshore wind turbines in Europe and North America
Breton, Simon-Philippe, (2009)
-
Estimation de densité conditionnelle lorsque l'hypothèse de normalité est insatisfaisante
Carreau, Julie, (2004)
-
Evaluation of classical spatial-analysis schemes of extreme rainfall
Ceresetti, Davide, (2012)
- More ...