Is machine learning a necessity? : a regression-based approach for stock return prediction
Year of publication: |
2025
|
---|---|
Authors: | Cheng, Tingting ; Jiang, Shan ; Zhao, Albert Bo ; Zhao, Junyi |
Published in: |
Journal of empirical finance. - [Erscheinungsort nicht ermittelbar] : Elsevier Science, ISSN 0927-5398, ZDB-ID 1496810-1. - Vol. 81.2025, Art.-No. 101598, p. 1-18
|
Subject: | Machine learning | Combination forecast | Factor screening | Iterated combination | Stock return prediction | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Prognose | Forecast | Schätzung | Estimation | Regressionsanalyse | Regression analysis |
-
Stock return prediction : stacking a variety of models
Zhao, Albert Bo, (2022)
-
Oil futures volatility predictability : new evidence based on machine learning models
Lu, Xinjie, (2022)
-
Real-time inflation forecasting with high-dimensional models : the case of Brazil
Garcia, Márcio Gomes Pinto, (2017)
- More ...
-
Complete subset averaging methods in corporate bond return prediction
Cheng, Tingting, (2023)
-
The impact of COVID-19 pandemic on the volatility connectedness network of global stock market
Cheng, Tingting, (2022)
-
Stock return prediction : stacking a variety of models
Zhao, Albert Bo, (2022)
- More ...