Joint Bayesian analysis of oarameters and states in nonlinear non‐Gaussian state space models
| Year of publication: |
August 2017
|
|---|---|
| Authors: | Barra, István ; Hoogerheide, Lennart ; Koopman, Siem Jan ; Lucas, André |
| Published in: |
Journal of applied econometrics. - Chichester : Wiley-Blackwell, ISSN 0883-7252, ZDB-ID 633941-4. - Vol. 32.2017, 5, p. 1003-1026
|
| Subject: | Bayesian inference | importance sampling | Monte Carlo estimation | Metropolis-Hastings algorithm | mixture of Student's t-distributions | Bayes-Statistik | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Zustandsraummodell | State space model | Stichprobenerhebung | Sampling | Algorithmus | Algorithm | Schätzung | Estimation |
-
Joint Bayesian analysis of parameters and states in nonlinear, non-Gaussian state space models
Barra, István, (2014)
-
Joint independent metropolis-hastings methods for nonlinear non-Gaussian state space models
Barra, Istvan, (2013)
-
Ardia, David, (2009)
- More ...
-
Bayesian Risk Forecasting for Long Horizons
Borowska, Agnieszka, (2019)
-
Partially Censored Posterior for Robust and Efficient Risk Evaluation
Borowska, Agnieszka, (2019)
-
Partially censored posterior for robust and efficient risk evaluation
Borowska, Agnieszka, (2020)
- More ...