Extent: | XIII, 255 S graph. Darst. 235 mm x 155 mm |
---|---|
Series: | International series in operations research & management science. - Cham, Switzerland : Springer, ISSN 0884-8289, ZDB-ID 1445981-4. - Vol. 106 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | 5.1. The multi-level scheduling problem -- 5.1.1. Problem formulation -- 5.1.2. Minimizing the maximum deviation -- 5.1.3. Minimizing the total deviation -- 5.2. The single-level scheduling problem -- 5.2.1. Problem formulation -- 5.2.2. Minimizing the maximum deviation -- 5.2.3. Minimizing the total deviation -- 5.2.4. Cyclic sequences -- 5.2.5. Transformation of the PRV problem to the apportionment problem -- 5.3. Scheduling periodic tasks -- 5.3.1. Problem formulation -- 5.3.2. Scheduling algorithms -- 5.3.3. Properties of feasible schedules 1. Just-in-time concept in manufacturing and computer systems -- 1.1. Manufacturing systems -- 1.1.1. Production planning and control -- 1.1.2. Just-in-time systems -- 1.1.3. Balanced schedules -- 1.1.4. Earliness and tardiness cost -- 1.2. Computer systems -- 1.2.1. Real-time systems -- 1.2.2. Hard real-time systems -- 1.2.3. Soft real-time systems -- 2. Methodological background -- 2.1. Deterministic scheduling theory -- 2.1.1. Basic definitions -- 2.1.2. Earliness and tardiness cost functions -- 2.1.3. Scheduling algorithms and computational complexity -- 2.2. The Theory of Apportionment -- 2.2.1. Problem formulation -- 2.2.2. Divisor methods -- 2.2.3. Staying within the quota -- 2.2.4. Impossibility Theorem -- 3. Common due date -- 3.1. Linear cost functions -- 3.1.1. Mean Absolute Deviation -- 3.1.2. Weighted Sum of Absolute Deviations -- 3.1.3. Symmetric weights -- 3.1.4. Total Weighted Earliness and Tardiness -- 3.1.5. Controllable due date -- 3.1.6. Controllable processing times -- 3.1.7. Resource dependent ready times -- 3.1.8. Common due window -- 3.2. Quadratic cost function -- 3.2.1. Completion Time Variance -- 3.2.2. Restricted MSD problem -- 3.2.3. Other models -- 4. Individual due dates -- 4.1. Schedules with idle time -- 4.1.1. Arbitrary weights -- 4.1.2. Proportional weights -- 4.1.3. Mean absolute lateness -- 4.1.4. Maximizing the number of just-in-time tasks -- 4.1.5. Minimizing the maximum earliness/tardiness cost -- 4.1.6. Scheduling with additional resources -- 4.1.7. Other models -- 4.2. Schedules without idle time -- 4.2.1. Arbitrary weights -- 4.2.2. Task independent weights -- 4.3. Controllable due dates -- 4.3.1. TWK due date model -- 4.3.2. SLK due date model -- 4.3.3. Scheduling with batch setup times -- 5. Algorithms for schedule balancing |
ISBN: | 978-0-387-71717-3 ; 978-387-71717-X ; 978-0-387-71718-0 |
Classification: | Fertigung ; Angewandte Mathematik |
Source: | ECONIS - Online Catalogue of the ZBW |
Persistent link: https://ebvufind01.dmz1.zbw.eu/10009627258