Kinematic calibration of bracket type parallel posture alignment mechanism considering the gravity effect
Purpose: The purpose of this study is to improve the position and posture accuracy of posture alignment mechanism. The automatic drilling and riveting machine is an important equipment for aircraft assembly. The alignment accuracy of position and posture of the bracket type posture alignment mechanism has a great influence on the operation effect of the machine. Therefore, it is necessary to carry out the kinematic calibration. Design/methodology/approach: Based on analysis of elastic deformation of the bracket and geometric errors of the posture alignment mechanism, an improved method of kinematic calibration was proposed. The position and posture errors of bracket caused by geometric errors were separated from those caused by gravity. The method of reduction of dimensions was applied to deal with the error coefficient matrix in error identification, and it did not change the coefficient of the error terms. The target position and its posture were corrected to improve the error compensation accuracy. Furthermore, numerical simulation and experimental verification were carried out. Findings: The simulation and experimental results show that considering the influence of the elastic deformation of the bracket on the calibration effect, the error identification accuracy and compensation accuracy can be improved. The maximum value of position error is reduced from 5.33 mm to 1.60 × 10−1 mm and the maximum value of posture error is reduced from 1.07 × 10−3 rad to 6.02 × 10−4 rad, which is superior to the accuracy without considering the gravity factor. Originality/value: This paper presents a calibration method considering the effects of geometric errors and gravity. By separating position and posture errors caused by different factors and correcting the target position and its posture, the results of the calibration method are greatly improved. The proposed method might be applied to any parallel mechanism based on the positioner.
Year of publication: |
2019
|
---|---|
Authors: | Wang, Zhihao ; Chen, Wenliang ; Wang, Min ; Xu, Qinghe ; Huang, Can |
Published in: |
Industrial Robot: the international journal of robotics research and application. - Emerald, ISSN 0143-991X, ZDB-ID 2025337-0. - Vol. 46.2019, 5 (19.08.), p. 581-598
|
Publisher: |
Emerald |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Pan, Guowei, (2019)
-
Chen, Wenliang, (2017)
-
Integrated capacity planning and production control of an assembly manufacturing system
Chen, Wenliang, (2021)
- More ...